Three Types of AI
It is useful for companies to look at AI through the lens of business capabilities rather than technologies. Broadly speaking, AI can support three important business needs: automating business processes, gaining insight through data analysis, and engaging with customers and employees.
Process automation.
Of the 152 projects we studied, the most common type was the automation of digital and physical tasks—typically back-office administrative and financial activities—using robotic process automation technologies. RPA is more advanced than earlier business-process automation tools, because the “robots” (that is, code on a server) act like a human inputting and consuming information from multiple IT systems. Tasks include:
- transferring data from e-mail and call center systems into systems of record—for example, updating customer files with address changes or service additions;
- replacing lost credit or ATM cards, reaching into multiple systems to update records and handle customer communications;
- reconciling failures to charge for services across billing systems by extracting information from multiple document types; and
- “reading” legal and contractual documents to extract provisions using natural language processing.
RPA is the least expensive and easiest to implement of the cognitive technologies we’ll discuss here, and typically brings a quick and high return on investment. (It’s also the least “smart” in the sense that these applications aren’t programmed to learn and improve, though developers are slowly adding more intelligence and learning capability.) It is particularly well suited to working across multiple back-end systems.
At NASA, cost pressures led the agency to launch four RPA pilots in accounts payable and receivable, IT spending, and human resources—all managed by a shared services center. The four projects worked well—in the HR application, for example, 86% of transactions were completed without human intervention—and are being rolled out across the organization. NASA is now implementing more RPA bots, some with higher levels of intelligence. As Jim Walker, project leader for the shared services organization notes, “So far it’s not rocket science.”
One might imagine that robotic process automation would quickly put people out of work. But across the 71 RPA projects we reviewed (47% of the total), replacing administrative employees was neither the primary objective nor a common outcome. Only a few projects led to reductions in head count, and in most cases, the tasks in question had already been shifted to outsourced workers. As technology improves, robotic automation projects are likely to lead to some job losses in the future, particularly in the offshore business-process outsourcing industry. If you can outsource a task, you can probably automate it.
Cognitive insight.
The second most common type of project in our study (38% of the total) used algorithms to detect patterns in vast volumes of data and interpret their meaning. Think of it as “analytics on steroids.” These machine-learning applications are being used to:
- predict what a particular customer is likely to buy;
- identify credit fraud in real time and detect insurance claims fraud;
- analyze warranty data to identify safety or quality problems in automobiles and other manufactured products;
- automate personalized targeting of digital ads; and
- provide insurers with more-accurate and detailed actuarial modeling.
Cognitive insights provided by machine learning differ from those available from traditional analytics in three ways: They are usually much more data-intensive and detailed, the models typically are trained on some part of the data set, and the models get better—that is, their ability to use new data to make predictions or put things into categories improves over time.
Cognitive engagement.
Projects that engage employees and customers using natural language processing chatbots, intelligent agents, and machine learning were the least common type in our study (accounting for 16% of the total). This category includes:
- intelligent agents that offer 24/7 customer service addressing a broad and growing array of issues from password requests to technical support questions—all in the customer’s natural language;
- internal sites for answering employee questions on topics including IT, employee benefits, and HR policy;
- product and service recommendation systems for retailers that increase personalization, engagement, and sales—typically including rich language or images; and
- health treatment recommendation systems that help providers create customized care plans that take into account individual patients’ health status and previous treatments.
The companies in our study tended to use cognitive engagement technologies more to interact with employees than with customers. That may change as firms become more comfortable turning customer interactions over to machines. Vanguard, for example, is piloting an intelligent agent that helps its customer service staff answer frequently asked questions. The plan is to eventually allow customers to engage with the cognitive agent directly, rather than with the human customer-service agents. SEBank, in Sweden, and the medical technology giant Becton, Dickinson, in the United States, are using the lifelike intelligent-agent avatar Amelia to serve as an internal employee help desk for IT support. SEBank has recently made Amelia available to customers on a limited basis in order to test its performance and customer response.
The Future Cognitive Company
Our survey and interviews suggest that managers experienced with cognitive technology are bullish on its prospects. Although the early successes are relatively modest, we anticipate that these technologies will eventually transform work. We believe that companies that are adopting AI in moderation now—and have aggressive implementation plans for the future—will find themselves as well positioned to reap benefits as those that embraced analytics early on.
Through the application of AI, information-intensive domains such as marketing, health care, financial services, education, and professional services could become simultaneously more valuable and less expensive to society. Business drudgery in every industry and function—overseeing routine transactions, repeatedly answering the same questions, and extracting data from endless documents—could become the province of machines, freeing up human workers to be more productive and creative. Cognitive technologies are also a catalyst for making other data-intensive technologies succeed, including autonomous vehicles, the Internet of Things, and mobile and multichannel consumer technologies.
The great fear about cognitive technologies is that they will put masses of people out of work. Of course, some job loss is likely as smart machines take over certain tasks traditionally done by humans. However, we believe that most workers have little to fear at this point. Cognitive systems perform tasks, not entire jobs. The human job losses we’ve seen were primarily due to attrition of workers who were not replaced or through automation of outsourced work. Most cognitive tasks currently being performed augment human activity, perform a narrow task within a much broader job, or do work that wasn’t done by humans in the first place, such as big-data analytics.
Most managers with whom we discuss the issue of job loss are committed to an augmentation strategy—that is, integrating human and machine work, rather than replacing humans entirely. In our survey, only 22% of executives indicated that they considered reducing head count as a primary benefit of AI.
We believe that every large company should be exploring cognitive technologies. There will be some bumps in the road, and there is no room for complacency on issues of workforce displacement and the ethics of smart machines. But with the right planning and development, cognitive technology could usher in a golden age of productivity, work satisfaction, and prosperity.
? Try StreamYard FREE Here! https://streamyard.com/pal/4859907029073920
We cover connecting destinations, scheduling, inviting guests, simulcasting/multi-streaming, setting up your branding, and much more.
For additional documentation, visit https://web.facebook.com/groups/streamyardforbeginners